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Abstract

Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional deriva-
tives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of
potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical proce-
dure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an
additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an
energy functional of the density that, for v-representable densities, assumes its minimum value at the density describing the ground
state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.
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1. Introduction

The theorems of Hohenberg and Kohn [1–3] ushered in den-
sity functional theory (DFT), a paradigm in quantum mechan-
ics geared towards the solution of the electronic structure prob-
lem defined, for our purposes, as the determination of the quan-
tum states of an interacting system of N-electrons in condensed
matter. The theorems are developed with respect to the static
ground state of an interacting system. The First Theorem shows
that the density determines the potential, v(r), acting on an in-
teracting N-particle system as a unique (within an additive con-
stant) functional of the density. The Second Theorem estab-
lishes the existence of an energy functional of the density,

Ev[n] =

∫
v(r)n(rdr) + 〈ΨGS|T̂ N + ÛN |ΨGS〉, (1)

where ΨGS(r1, . . . , rN) = ΨGS(r(N)) is the wave function of the
ground state of an interacting N-particle system evolving under
the action of an external potential, v(r). The operators, T̂ N and
ÛN , denote, respectively, the kinetic energy and inter-particle
interaction of the interacting system. We consider a function
of coordinates to be a density if it’s everywhere non-negative,
normalized to an integer, N, and satisfies the so-called kinetic
energy condition,∫

[∇r
√

n(r)]2dr < ∞. (2)
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The minimum value of Ev[n] occurs at the exact density of the
ground state of an interacting system where it is equals the en-
ergy of the system’s ground state.

The expectation value,

〈ΨGS|T̂ N + ÛN |ΨGS〉 = FHK[n], (3)

is the Hohenberg and Kohn functional that is determined
through knowledge of the density alone being independent of
the potential, and is hence referred to as a universal functional
of the density.

By construction, the theorems are applicable to densities that
are pure-state v-representable, i.e., are derived from the solu-
tion of a Schrödinger equation corresponding to a given po-
tential (other forms of v-representability, such as ensemble v-
representability can be defined but not considered here). We
confine the discussion to pure-state v-representability and re-
fer to the condition simply as v-rep. As is well known [2, 4],
however, the v-rep condition introduces a serious difficulty in
the theory, known as the v-representability problem. Namely,
given an arbitrary density the present form of the theory pro-
vides no mathematical procedure that can determine whether or
not it is v-rep.

The main difficulty presented by FHK[n] springs from the fact
that the set of v-rep densities is unknown, (given a density it
cannot be ascertained as to whether or not it is v-rep), and con-
sequently, FHK[n] is ill-defined [5] (the basic formulation of the
v-rep problem). An additional difficulty arises because the set
of v-rep densities is not differentially dense, i.e, there exist den-
sities that do not come from a potential [6–10] of an interacting
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(or non-interacting) system. If one ignored these difficulties,
the potential would be obtained from the relation,

δFHK[n]
δn(r)

= −v(r), (4)

modulo an arbitrary constant (that leaves the density un-
changed). This relation is generally accepted as to arise from
the minimum property of the energy functional, Eq. (1), at the
density of the ground state of the system (characterized by v(r)).

In the conventional interpretation of functional differentia-
tion, the functional derivative, δFHK[n]

δn(r) , defined through the pro-
cedure [2] (where the test function, φ(r), is arbitrary),

lim
ε→0

FHK[n + εφ(r)] − FHK[n]
ε

=

∫
δFHK[n]
δn(r)

φ(r)dr, (5)

at a given density hinges on the evaluation of the Hohenberg and
Kohn functional, FHK[n + δn], at densities that differ infinites-
imally from n(r). This requires that the density, n(r) + δn(r),
be v-rep, a serious difficulty since the set of v-rep densities is
not known, as well as requiring the existence of a small dense
neighborhood around the density in which the densities are v-
rep. Assuming such a neighborhood for any density, it can be
readily shown that all densities are v-rep in contradiction to
known facts to the contrary [2, 6, 7]. (A direct proof of the
impossibility of differentiating over the domain of v-rep densi-
ties is given near the end of this paper.)

An additional problem exists in the performance of func-
tional differentiation. Conventional functional differentiation
requires that the domain of the functional, say the set of den-
sities, {n(r)}, with a given normalization, N, contains all varia-
tions of the form, n(r) → n(r) + εφ(r), where φ(r) is arbitrary
(within common caveats of smoothness and integrability), and
ε → 0. It is certainly not true that the set of v-representable
densities possess this property. Unfortunately, neither does the
set of all densities as arbitrary variations may break the require-
ment of integral normalization.

At least two more difficulties must be mentioned in attempt-
ing the performance of the derivative: First, FHK[n] is defined in
terms of an expectation value with respect to the wave function
of a pure state (possibly the solution of a Schrödinger equa-
tion) and hence with respect to densities with integral normal-
ization, a condition that may fail in the mathematical process of
functional differentiation that is based on the use [2] of an arbi-
trary test function, φ(r), (such that δn(r) = εφ(r), with ε → 0).
Second, the perceived need to obtain the potential through the
functional derivative in (5) requires the knowledge of the value
of FHK[n] at densities other than the one in question, and thus
stands in contradiction to the First Theorem [1] specifying that
the potential is given through knowledge of the density alone.
The requirement that the test function be arbitrary causes fur-
ther difficulties. A density must be non-negative but for arbi-
trary functions φ(r) it is possible that n(r) + εφ(r) < 0. Guard-
ing against the appearance of a negative density compromises
the arbitrariness requirement on the test function.

A formal solution to the v-representability problem has been
sought in terms of potential functional theory [4]. Here, for
N-particle systems, one introduces functionals of potential,
EN,v[w] = EHK

N,v [n[w]], where EHK
N,v [n[w]] is the Hohenberg and

Kohn energy functional for v(r), usually denoted by the symbol,
Ev[n], evaluated at the v-rep density, n(r), corresponding to po-
tential, w(r). The stationary points (minima) of EN,v[w] occur
at the potentials, w(r) = v(r) + c, associated with the minima of
the Hohenberg and Kohn functional at the v-representable den-
sities corresponding to v(r). The optimized effective potential
(OEP) method [11–15] requires this theory as its mathematical
justification. Potential functional theory relies on the concept
that functionals of potential define a space that is the dual of
that of density functional theory. For such a concept to be valid
one must have some way of excluding densities that are not v-
representable from the space of the densities.

The introduction of the concept of N-representability [2, 7,
16], referred to as N-rep, namely that all densities can be
obtained from antisymmetric, N-particle wave functions, es-
tablished the rigorous foundation of a functional that, when
the density is v-representable, leads to to FHK[n]. In other
words, the set of v-representable densities is a subset of all
densities, each of which leads to a well-defined functional,
F[n]. Hence, the set FHK[n] is a subset of functionals each
of which is well defined, so that the subset is well-defined. N-
representability and the constrained search establish existence
but provide no means of determination, identification or con-
struction of FHK[n]. Neither does N-representability resolve the
difficulties with respect to normalization in the performance of
functional differentiation.

The v-representability problem would be convincingly
solved through the development of a rigorous mathematical
procedure that could determine whether or not the density is
v-representable. For this to materialize, density functional the-
ory must be formulated entirely based on the density, without
reference to a potential. This paper provides such a formula-
tion.

The remainder of the paper takes the following form. The
generalization of the Hohenberg and Kohn theorems to general,
N-representable densities is presented in the following section.
Then, we show how the density and corresponding wave func-
tion can be determined given the derivative with respect to the
density of a functional of the density determined as the min-
imum expectation value of the sum of the kinetic and inter-
particle potential operators. A discussion of the formal devel-
opments in the paper is given in the final section.

2. Hohenberg and Kohn Theorems for N-representable
Densities

The main result of the paper is a generalization of the Hohen-
berg and Kohn theorems in terms of general densities without
the condition that they are derived from a potential. The gener-
alization is based on the concept of parametric differentiation
leading to the determination of rates of change [17] with re-
spect to the density of expectation values of operators in terms
of wave functions that lead to a density. Now, the arbitrary test
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function of conventional functional differentiation is replaced
by a Dirac delta function leading to the definition,

δF[n]
δn(r′)

= lim
ε→0

F[n(r) + εδ(r − r′)] − F[n(r)]
ε

(6)

The Dirac delta function is not a proper function. Therefore
n(r) + εδ(r − r′) does not represent a proper charge density
that yields an energy expectation value. Instead, it provides
a method of parametric differentiation of any functional of den-
sities through the properties of the delta function using the den-
sity n only (and the associated wave functions, if appropri-
ate) [17]. This procedure bypasses the difficulties with con-
ventional functional derivatives when applied to functionals of
the density, and allows derivatives with respect to the density
of any wave function that leads to the density, and any expec-
tation value of operators with respect to such wave functions.
Parametric differentiation, in turn, can be justified based on the
work of Cioslowski [18–20], showing that every antisymmet-
ric wave function that leads to a density possesses well-defined
and unique derivatives at the density obtained through the para-
metric differentiation with respect to the density of all wave
functions that lead to the density. The general expression of the
explicit form of that derivative is given in Cioslowski [18–20]
(for a summary, see the appendix).

Let Ô = T̂ N + ÛN , and denote the parametric derivative with
respect to the density of the expectation value, 〈Ψ|T̂ N + ÛN |Ψ〉,
with the symbol, −qΨ(r),

δ〈Ψ|T̂ N + ÛN |Ψ〉

δn(r)
= −qΨ(r). (7)

Conventionally, a constant, c, is added to qΨ(r) to indicate the
fact that for v-rep densities, the density remains unaffected by a
uniform change in the potential. This constant is suppressed in
subsequent discussion.

Cioslowski [18] has shown how to construct the set of all an-
tisymmetric, N-particle wave functions that lead to a density.
Corresponding to each such wave function, construct the quan-
tity,

EΨ =

∫
qΨ(r)n(r)d(r) + 〈Ψ|T̂ N + ÛN |Ψ〉, (8)

and, confining derivatives only to first order with respect to the
density, note the identity,

δEΨ

δn(r)
= 0. (9)

Now, among all EΨ choose the lowest in value.
In the absence of degeneracy (assumed throughout), the

quantity, EΨ, is a minimum if and only if for any wave func-
tion, Ψ′ , Ψ, that leads to the density, we have,

〈Ψ′|qΨ + T̂ N + ÛN |Ψ′〉 > EΨ. (10)

The existence of a minimum follows from the assumption
that the search over the wave functions leading to a density is
exhaustive, and that the derivative of any wave function with
respect to the density is well-defined [19, 20].

We now prove the Generalized First Theorem of Hohenberg
and Kohn: The parametric derivative, qΨ(r), leading to the min-
imum value of EΨ[n] is a unique (within an arbitrary additive
constant) functional of the density.

In other words, for a given density, there exists only a single
minimum among the EΨ that determines the parametric deriva-
tive, qΨ(r), uniquely within an additive constant.

Consider the functional, {EΨ}[n], consisting of the set of all
EΨ obtained for a given density, n(r), and consider the mini-
mum value of the set. We show that the minimum leads to a
parametric derivative that is a unique (within an additive con-
stant) functional of the density. A schematic representation of
this form of the theorem is shown in Fig. 1.

Proof: Consider two antisymmetric wave functions, Ψ and
Ψ′, both leading to n(r) and to the same minimum value of the
functional in (8), but with qΨ(r) , qΨ′ (r) + c. Because the
parametric derivative of the quantity,

∫
qΨ(r)n(r)d(r)+〈Ψ′|T̂ N +

ÛN |Ψ′〉, with respect to n(r) is non-zero, we have the inequality,

EΨ[n] < 〈Ψ′|qΨ(r) + T̂ N + ÛN |Ψ′〉

= 〈Ψ′|qΨ′ (r) + T̂ N + ÛN |Ψ′〉

+

∫
[qΨ(r) − qΨ′ (r)]n(r)dr

= EΨ[n] +

∫
[qΨ(r) − qΨ′ (r)]n(r)dr, (11)

since EΨ[n] = EΨ′ [n]. Interchanging the roles of the primed
and unprimed wave functions, and adding the corresponding
expressions, we obtain the contradiction (reductio ad absur-
dum),

EΨ[n] + EΨ[n] < EΨ[n] + EΨ[n]. (12)

It follows that there cannot be two different parametric
derivatives, qΨ(r), leading to the same minimum value of the
expression in (8), so that qΨ(r) is a unique functional of the
density. As above we can write the functional in (8) in the
form, Eq[n][n]. For v-representable densities, this notation cor-
responds to the conventional one, Ev[n].

Clearly, in order to interpret this result in terms of the unique-
ness of the potential associated with a ground-state density, one
must first provide proof [21] that two potentials that differ by
more than a constant, v′(r) , v(r) + c, cannot lead to the same
ground-state density, n′(r) , n(r).

For v-representable densities, the results just established
prove that the density of the ground state of a potential de-
termines uniquely the potential (within an additive constant)
thus regaining the first of the theorems of Hohenberg and Kohn.
However, the theorem emerges as a spacial case for v-rep den-
sities of the general result that a density determines uniquely
(within an arbitrary constant) the parametric derivative of a
functional that is uniquely defined by the density.

Generalized Second Theorem: The functional Eq[n][n] as-
sumes its minimum value for the density that leads to q[n](r)
where, δEq[n][n]

δn(r) = 0.
Proof: Let there be two wave functions, Ψ(r(N)) → n(r) and

Ψ′(r(N)) → n′(r), leading to qΨ(r) , qΨ′ (r) + c such that the
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Figure 1: Two wave functions leading to the same density and minimizing
EΨ[n], as discussed in the text.

parametric derivatives of Eq[n][n] and Eq[n′][n′] at their respec-
tive arguments vanish identically. We have,

Eq[n][n′] = 〈Ψ′|qΨ + T̂ N + ÛN |Ψ′〉

=

∫
qΨ(r)n′(r)dr + 〈Ψ′|T̂ N + ÛN |Ψ′〉, (13)

so that,

δEq[n][n′]
δn′(r)

= qΨ(r) +
δ〈Ψ′|T̂ N + ÛN |Ψ′〉

δn′(r)
= qΨ(r) − qΨ′(r) , 0. (14)

Noting that the non-vanishing of the derivative at a point in-
dicates that the functional at that point is above its minimum
completes the proof.

3. Summary of Density Functional Theory for Ground
States

As emerges from this work, density functional theory is a
self-contained body of formalism that allows the determination
of a wave function corresponding to an observable, the den-
sity of a many-particle interacting system’s ground state. The
methodology accomplishes this task while avoiding the treat-
ment of the corresponding Schrödinger equation. This direct
connection, from classical reality to quantum states describing
the outcome of measurement, completes the program of quan-
tum mechanics a discipline whose fundamental purpose is the
determination of states revealed by and explaining the results of
measurement.

The independent variable of the theory is the density and its
workhorse is the constrained search. Thus, given a density nor-
malized to N, the theory prescribes the following sequence of
formal steps:

1. Generate the set of all antisymmetric, N-particle wave
functions that lead to the density.

2. Form the expectation value of the operator, T̂ N + ÛN , with
respect to these wave functions.

3. Identify the wave function, Ψ0(r(N)), that gives the lowest
expectation value,

F[n] = 〈Ψ0|T̂ N + ÛN |Ψ0〉. (15)

4. Determine the derivative,

δF[n]
δn(r)

= −q(r), (16)

5. and construct the Hamiltonian-like expression,

Ĥtrial = −

N∑
i=1

1
2
∇2

ri
+

N∑
i=1

q(ri) +
1
2

∑
i, j

U(ri, r j). (17)

6. Act on Ψ0(r(N)) by Ĥtrial and check the satisfaction of the
equality,

ĤtrialΨ0(r(N)) = αΨ0(r(N)), (18)

for some real α.
7. If the equality fails, the density can be discarded as un-

physical, at least with respect to the ground state of a physical
system. If it is satisfied, then q(r) is a potential, Ĥtrial is the cor-
responding many-particle Hamiltonian, and α is the eigenvalue
of the Hamiltonian’s ground state.

Steps 1. to 7. constitute a rigorous mathematical procedure
that can decide whether or not a density is v-representable thus
providing a rigorous solution to the v-representability problem.

It is seen that the density determines all properties of the
system that may be represented by the density, including the
properties of the density itself, in particular whether or not the
density is pure ground-state v-representable.

The present formulation allows the definition of density func-
tional theory as a body of work in mathematical physics that
leads to a solution of the Schrödinger equation for an interact-
ing, many-particle system (that for a ground state of a potential
acting on a system) without the explicit solution of the equation.
As is to be shown in future work, it also allows the determina-
tion of all eigenstates of a Hamiltonian of an interacting sys-
tem, as well as the determination of states for time-dependent
systems. In short, density functional theory is an alternative
methodology to that of the Schrödinger equation for determin-
ing the complete electronic structure of interacting systems, and
is indeed, the only such method currently known. The verifica-
tion of this statement is provided through other work (currently
in preparation) in which excited states and time-dependent sys-
tems are treated within density functional theory, through sole
knowledge of the density.

4. Determining the Density

We now inquire as to whether it is possible to determine the
density and the corresponding wave function given the para-
metric derivative, q(r) (suppressing the notation q[n] in favor
of q).
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Consider the functional, where q(r) corresponds to a density,
n(r),

Eq[n] =

∫
q(r)n(r)dr + F[n]. (19)

In the absence of degeneracies, let the Slater determinant,
Φ0(r1, . . . , rN), lead to the same density, n(r), and minimize
the expectation value of the kinetic energy of a system of N
electrons, establishing the functional,

Tdet[n] = Min︸︷︷︸
|Φ〉→n(r)

〈Φ|T̂ N |ΦN〉

= 〈Φ0|T̂ N |Φ0〉. (20)

The density is obtained in terms of Φ0(r(N)) by the expression,

n(r) =
∑

j

| f j(r)|2, (21)

where f j(r) are the single-particle orbitals that enter the con-
struction of the Slater determinant, Φ0(r(N)).

We denote the parametric derivative of Tdet[n] with respect
to the density by the symbol qΦ(r), so that

δTdet[n]
δn(r)

= −qΦ(r) + c. (22)

Now, construct the functional,

Fs[n] = 〈Φ0|T̂ N + ÛN |Φ0〉, (23)

and note that,

Ec[n] = F[n] − Fs[n] ≤ 0, (24)

because Φ0 , Ψ0. Within the present context, the quantity
Ec[n] is referred to as the correlation energy. Adding and sub-
tracting Fs[n] to the right-hand side of Eq. (19), we have,

Eq[n] =

∫
q(r)n(r)dr + Fs[n] + Ec[n]. (25)

Setting the parametric derivative of the last expression with re-
spect to the density equal to zero, to signify the presence of a
minimum, we obtain the following condition (again suppress-
ing arbitrary constants),

qΦ(r) = qΨ(r) +
δ{〈Φ0|ÛN |Φ0〉 + Ec[n]}

δn(r)
= qΨ(r) + vC(r) + µc(r), (26)

where vC(r) =
δ〈Φ0 |ÛN |Φ0〉

δn(r) is the Coulomb potential, and µc(r) =
δEc[n]
δn(r) is the correlation potential. Therefore, given the task

of obtaining the density and corresponding wave function that
lead to the minimum value of the functional in Eq. (19), one
searches for the Slater determinant that leads to a parametric
derivative satisfying the condition in (26). The implication of
these developments to the implementation of DFT based on the
Kohn-Sham scheme will be discussed in future work.

4.1. Connection with Initial Formulations
For a given density, n(r), implement the constrained search,

identify the wave function (quantum state), |Ψ0〉, that minimizes
the expectation value of T̂ N + ÛN , construct the derivative,
qΨ0 (r), and check whether or not |Ψ0〉 is an eigenstate of the
operator, q̂Ψ0 + T̂ N + ÛN , i.e., whether or not it satisfies the
equality,[

q̂Ψ0 + T̂ N + ÛN
]

= α|Ψ0〉. (27)

If it does, then the expression above is a Schrödinger equa-
tion for an interacting N-particle system, qΨ0 (r) is the external
scalar potential acting on the system, |Ψ0〉 demotes the system’s
ground state, and α the corresponding ground-state energy. The
theorems of Hohenberg and Kohn follow.

With this definition of the potential, we now examine how the
conventional functional derivative might be taken for energies
that are at minimum. Consider a (parametric) variation of the
potential qΨ0 (r) → qΨ0 (r) + δqΨ0 (r). The change in the total
energy, which is already minimized with respect to all densities,
can be evaluated using the Hellmann-Feynman theorem [22],

δEq = Eq+δq − Eq =

∫
δqΨ0 (r)n(r)dr. (28)

On the other hand, if the two densities that minimize the total
energy for the two potentials are n(r) and n(r) +δn(r) (the latter
could be obtained from the former using a perturbation expan-
sion in terms of δqΨ0 (r)), we can also write the change in the
total energy as,

δEq =

∫
δqΨ0 (r)n(r)dr

+

∫
qΨ0 (r)δn(r)dr +

∫
δF[n]
δn(r)

δn(r)dr. (29)

These two equations yield,∫ {
qΨ0 (r) +

δF[n]
δn(r)

}
δn(r)dr = 0. (30)

If δn(r) is an arbitrary function (with the constraint
∫
δn(r)dr =

0), then the above equation will lead to Eq. (4). However, δn(r)
can only take a subset of functions, those that correspond to
δqΨ0 (r). It is therefore possible to find at least one function,
g(r) , 0, that is perpendicular to all allowed δn(r),∫

g(r)δn(r)dr = 0. (31)

Thus, we obtain instead,

δF[n]
δn(r)

= −qΨ0 (r) + cg(r), (32)

where c is an abritrary constant. This proves that it is gen-
erally not possible to take functional derivatives with only
v-representable densities. These developments illustrate the
principle that (conventional) functional derivatives can be per-
formed only through arbitrary variations of the independent
variable, being blocked over domains constrained by conditions
such as v-representability or normalization.
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5. Discussion

For v-rep densities, Hohenberg and Kohn’s First Theorem es-
tablishes a unique functional dependence between the density
and the corresponding potential, thus postulating that knowl-
edge of a density, and only knowledge of that density is required
in determining the potential. This is the first notion underlying
the developments above.

Second, in and of itself the theorem provides no method
for determining the potential. Such a method is clearly sug-
gested by Eqs. (4) and (5), only to be realized that the
derivative indicated cannot be performed because of the v-
representability problem. Even after that problem has been cir-
cumvented, however, through the developments based on N-
representability [16], conventional functional differentiation is
blocked because of three reasons: The First Theorem disal-
lows consideration of any density other than the one in question
in determining the properties of the system (and conventional
functional differentiation requires consideration of, in princi-
ple, an infinite number of such densities), the wave functions
leading to a density are generally not written explicitly in terms
of the density, and normalization requirement can be violated
in the process of conventional functional differentiation. These
seemingly insurmountable barriers are bypassed through the
formalism outlined in the paper.

The present formalism reinforces the content of the First
Theorem [1] by providing an explicit procedure allowing the
determination of the potential through the exclusive knowl-
edge of a density (if it happens to be v-representable). It is
to be noted, however, that the procedure of determining func-
tional derivatives with respect to the density underlying the
present formalism is generally applicable to all densities, with
v-representable densities occupying no place of prominence.
The formalism also preserves the fundamental feature of den-
sity functional theory of determining the wave function of the
ground state of an interacting many-electron system through
the sole knowledge of the density, thus fulfilling directly the
program of quantum mechanics of determining the states of
physical systems corresponding to the results of measurement
through sole knowledge of observables (here the ground-state
densities) determined through measurement.
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Appendix A. Orbitals and Parametric Derivatives

Cioslowski [18–20] has provided a formal determination of
the set S Ψ→n of all antisymmetric N-particle wave functions

that lead to a density normalized to N. A general element of
S Ψ→n is written as a linear superpositions of Slater determi-
nants, (in Einstein summation notation),

Ψ(r(N)) = CPΦP(r(N)), CPCP = 1, (A.1)

where ΦP(r(N)) is a Slater determinant of order N constructed
from N elements (orbitals), ψ j(r), that form a complete and
orthonormal basis in single-particle, three-dimensional coordi-
nate space. The orbitals, ψ j(r), are constructed so that the mod-
ulus of the wave function, Ψ(r(N)), squared and integrated over
all coordinates but one yields the density,∫

|Ψ(r(N))|2dr1 . . . drN = n(r1), (A.2)

This property follows from the form of the orbitals (see [18]),

ψ j(r) =

√
n(r)su

jφu(r)√
CPCQΞkl

PQsu
k su

l φu(r)φu(r)
, (A.3)

where the functions, φu(r), form a complete but not necessarily
orthonormal basis in three-dimensional coordinate space, the
matrix, Ξkl

PQ, is defined by the integral over all coordinates but
one of two Slater determinants,∫

ΦQ((r(N))ΦP(r(N))dr2dr3 . . . drN

=

∫ {
(−1) j+1ψ j(r1)MQ

j (r2, . . . , rN)

× (−1)i+1ψi(r1)MP
i (r2, . . . , rN)

}
dr2dr3 . . . drN

= Ξkl
QPψk(r1)ψl(r1) (A.4)

where in the second line we have used the expansion of a deter-
minant along its first row, MQ

j (r2, . . . , rN) is the minor of ψ j(r1)
in ΦQ((r(N)), and the matrix s is defined as the square root of a
matrix,

s = S −
1
2 , (A.5)

whose elements are given by the integrals,

S i j =

∫
n(r)φi(r)φ j(r)

[CPCQΞkl
PQsu

k su
l φu(r)φu(r)]

dr. (A.6)

The non-linear nature of the transformation, S , between the set
of functions, {φ j(r)} and {ψk}, is clear. The existence and con-
vergence of S has been demonstrated by Cioslowski [19, 20].

Cioslowski [18] shows that the set of orbitals that form the
Slater determinant, Φ0(r(N)) take the form,

ψ j(r) =

√
n(r)su

jφu(r)√
〈φ(r)|S −1|φ(r)〉

, (A.7)

where,

S i j =

∫
n(r)φi(r)φ j(r)

[〈φ(r)|S −1|φ(r)〉]
dr. (A.8)
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In the last two expressions, a vector-matrix notation is used, so
that 〈φ(r)|S −1|φ(r)〉 =

∑
kl φk(r)[S −1]klφl(r).

We now examine the properties of the orbitals defining
Φ0(r(N)).

Clearly, the set, {φ j(r)}, is arbitrary and hence not a func-
tional of the density. Because of this, the matrix, S , whose
value depends on {φ j(r)} is not a functional of the density ei-
ther, and consequently neither are the orbitals, ψ j(r). However,
the set of orbitals forming Φ0(r) is uniquely defined regardless
of the choice of {φ j(r)}.

Furthermore, because of the explicit presence of the density
in Eq. (A.8), the matrix, S , possesses a parametric derivative
with respect to the density,

δS
δn(r′)

=
|φ(r′)〉〈φ(r′)|
〈φ(r′)|S −1|φ(r′)〉

+

∫
n(r)|φ(r)〉〈φ(r|)

[〈φ(r)|S −1|φ(r)]2

× Tr

S −1|φ(r)〉〈φ(r)|S −1 δS
δn(r′)

]
dr, (A.9)

an equation to be solved for the derivatives, δS i j

δn(r) (see [19, 20]).
(For a fixed set {φ j(r)}, one can view S i j as a functional of the
density, and refer to the paramagnetic derivative as a functional
derivative. At the same time, the derivative with respect to the
density, n(r), requires no knowledge of S for any density other
than n(r)). This defines the parametric derivative of the basis
functions, ψ j(r), with respect to the density for each choice of
auxiliary functions, evaluated at the particular density. Con-
sequently, it defines a unique derivative of any wave function
leading to the density that is independent of the choice of aux-
iliary functions.

To summarize: Each density, n(r), defines its own space
of parametric (functional) differentiation of individual orbitals
used to construct the antisymmetric, N-particle wave functions,
Ψ(r(N); [n]), that lead to a density. Thus, all orbitals and corre-
sponding wave functions that lead to a density possess uniquely
defined parametric derivatives with respect to the density.
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